
© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805781 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 174

AN EFFICIENT AND IMPROVED RADIX-16

BASED BOOTH MULTIPLIER FOR 64-BIT

BASED ON THE REDUCED HEIGHT OF

PARTIAL PRODUCT ARRAY

N. Shehanaz1 , B.V. Sowjanya2 , T.C Sanjeeva Rayudu3
1 Adhoc Assistant Professor, 2 Adhoc Assistant Professor, 3 Adhoc Assistant Professor,

1,2,3 JNTUA College of Engineering (Autonomous), Pulivendula.

Abstract : The reduction of partial product columns height has made to 16 bit using a modified booth multiplier for 64 bit

unsigned operations in this proposed method, where as the conventional system has more than 16-bit partial product size. So the

height of the array has reduced by one unit in this modified technique. This reduction of one unit adds some properties like

increased speed of operation, low power consumption and reduced area. This work can be extended by increasing bit size &

fusion techniques.

Index Terms: Booth Multiplier (BM), Partial Product Array (PPA)

I. INTRODUCTION

Fast Adders and Multipliers are most important aspects of DSP Systems. The important part of multiplication is partial

product generator, which takes more time to generate the result. The multiplication process was ordinarily applied through a

sequence of Addition, Subtraction & Shift operations. Multiplication will also be considered as continuous procedure of repeated

additions. The number to be delivered is the multiplicand, the number of times that it's introduced is the multiplier, and the effect

is the product. The generation of partial products is the resultant of step by step addition. Generally the size of multiplicand &

multiplier is same in most of the computers.

Higher radix signed recoding is less popular because the generation of the partial products requires odd multiples of the

multiplicand which can’t be achieved by means of simple shifts, but require carry-propagate additions. For instance, for radix-16

signed digit recoding the digit set is {−8, −7,..., 0,..., 7, 8}, so that some odd multiples of the multiplicand have to be generated.

Specifically, it is required to generate ×3, ×5, and ×7 multiples (×6 is obtained by simple shift of ×3). The generation of each of

these odd multiplies requires a two term addition or subtraction, yielding a total of three carry-propagate additions.

II EXISTING DESIGN

The architecture of the basic radix-16 Booth multiplier is shown in below figure. For sake of simplicity, but without loss

of generality, an unsigned operands with n = 64 bit has explained.

The multiplicand operand ‘X’ with bit components xi (i = 0 to n − 1, with the least-significant bit, LSB, at position 0) and

with ‘Y’ the multiplier operand and bit components yi. The first step is the recoding of the multiplier operand [8]: groups of four

bits with relative values in the set {0, 1,..., 14, 15} are recoded to digits in the set {−8, −7,..., 0,..., 7, 8} (minimally redundant

radix-16 digit set to reduce the number of multiples). This recoding is done with the help of a transfer digit t i and an interim digit

wi. The recoded digit zi is the sum of the interim and transfer digits zi = wi + ti.

For the set of digits {−8, −7,..., 0,..., 7, 8}, the multiples 1X, 2X, 4X, and 8X are easy to compute, since they are obtained

by simple logic shifts. The negative versions of these multiples are obtained by bit inversion and addition of a 1 in the

corresponding position in the bit array of the partial products. The generations of 3X, 5X, and 7X (odd multiples) requires carry-

propagate adders (the negative versions of these multiples are obtained as before). Finally, 6X is obtained by a simple one bit left

shift of 3X.

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805781 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 175

FIGURE 1: Existing system of Partial Product Generation

 Figure 1 shows possible implementation of the partial product generation. Five bits of the multiplier Y are used to obtain

the recoded digit (four bits of one digit and one bit of the previous digit to determine the transfer digit to be added). The resultant

digit is obtained as a one-hot code to directly drive a 8 to 1 multiplexer with an implicit zero output (output equal to zero when all

the control signals of the multiplexer are zero). The recoding requires the implementation of simple logic equations that are not in

the critical path due to the generation in parallel of the odd multiples (carry-propagate addition). The XOR at the output of the

multiplexer is for bit complementation (part of the computation of the two’s complement when the multiplier digit is negative).

 Figure 2(a) illustrates part of the resultant bit array for n = 64 bit size after the simplification of the sign extension. In

general, each partial product has n + 4 bits including the sign in two’s complement representation. The extra four bits are required

to host a digit multiplication by up to 8 and a sign bit due to the possible multiplication by negative multiplier digits.

FIGURE 2: Partial Product reduction array of Radix-16 system

 Since the partial products are left-shifted four bit positions with respect to each other, a costly sign extension would be

necessary. However, the sign extension is simplified by concatenation of some bits to each partial product (S is the sign bit of the

partial product and C is S complemented): CSSS for the first partial product and 111C for the rest of partial products (except the

partial product at the bottom that is non negative since the corresponding multiplier digit is 0 or 1). The bits denoted by b in Fig. 2

corresponds to the logic 1 that is added for the two’s complement for negative partial products.

III PROPOSED DESIGN

 Figure 3 shows the specific elements of the bit array to be added by the short carry-propagate addition. In this figure, pi,j

corresponds to the bit j of partial product i, s0 is the sign bit of partial product 0, c0 = NOT(s0), bi is the bit for the two’s

complement of partial product i and zi is the ith bit of the result of the short addition.

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805781 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 176

FIGURE 3: Short hand addition procedure

 The selection of these specific bits to be added is justified by the fact that, in this way, the short addition delay is hidden

from the critical path that corresponds to a regular partial product generation. Here the computation is performed in two

concurrent parts A and B. The elements of the part A are generated faster than the elements of part B. Specifically the elements of

part A are obtained from, the sign of the first partial product: this is directly obtained from bit y3 since there is no transfer digit

from a previous radix-16 digit & bits 3 to 7 of partial product 16: the recoded digit for partial product 16 can only be 0 or 1, since

it is just a transfer digit. Therefore the bits of this partial product are generated by a simple AND operations of the bits of the

multiplicand X and bit y63.

 The implementation of part A as a speculative addition, by computing two results, a result with carry-in = 0 and a result

with carry-in = 1. This can be computed efficiently with a compound adder as shown in below figure. Figure 4 shows the

implementation of part A. The compound adder determines speculatively the two possible results. Once the carry-in is obtained

(from part B), the correct result is selected by a multiplexer.

FIGURE 4: Proposed design of Speculative addition of Part A

The computation of part B is more complicated. The main issue is that we need the 7 least-significant bits of partial product 15.

Of course waiting for the generation of partial product 15 is not an option since we want to hide the short addition delay out of the

critical path. We decided to implement a specific circuit to embed the computation of the least-significant bits of partial product

15 in the computation of part B (and also the addition of the bit b15). Note that for the method to be correct the computation of

the partial product embedded in part B should be consistent with the regular computation performed for the most significant bits

of partial product 15.

FIGURE 5: Proposed design of Computation of Part B

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805781 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 177

 Figure 5 shows the computation of part B. We decided to compute part B as a three operand addition with a 3:2 carry

save adder and a carry-propagate adder. Two of the operands correspond to the least-significant bits of the partial product 15 and

the other operand corresponds to the three least-significant bits of partial product 16 (that are easily obtained by an AND

operation).

 Figure 6 shows the recoding and partial product generation stage including the high level view of the hardware scheme

proposed. The way we compute part B may still lead to an inconsistency with the computation of the most significant part of

partial product 15. Specifically, when partial product 15 is the result of an odd multiple, a possible carry from the 7 least-

significant bits is already incorporated in the most significant part of the partial product. During the computation of part B we

should not produce again this carry.

FIGURE 6: Proposed Scheme along with Part A and Part B

IV. SIMULATION RESLUT

FIGURE 7: Simulation result of Proposed system

V.CONCLUSION

 Finally the presented method effectively used to reduce by one the maximum height of the partial product array for 64-

bit radix-16 Booth recoded magnitude multipliers. This reduction may allow more flexibility in the design of the reduction tree of

the pipelined multiplier. We have shown that this reduction is achieved with no extra delay for n ≥ 32 for a cell-based design. The

method can be extended to Booth recoded radix-8 multipliers, signed multipliers and combined signed/unsigned multipliers.

Radix-8 and radix-16 Booth recoded multipliers are attractive for low power designs, mainly to the lower complexity and depth of

the reduction tree.

VI. REFERENCES

 [1] M. Daumas and D. W. Matula, “A Booth multiplier accepting both a redundant or a non redundant input with no additional

delay,” in Proc. IEEE Int. Conf. on Application-Specific Syst., Architectures, and Processors, pp. 205–214, 2000.

 [2] S. Kuang, J. Wang, and C. Guo, “Modified booth multipliers with a regular partial product array,” IEEE Trans. Circuits Syst.

II, Exp. Briefs, vol. 56, no. 5, pp. 404–408, May 2009.

[3] S. Xydis, I. Triantafyllou, G. Economakos, and K. Pekmestzi, “Flexible datapath synthesis through arithmetically optimized

operation chaining,” in Proc. NASA/ESA Conf. Adaptive Hardware Syst., pp. 407–414, 2009.

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805781 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 178

[4] F. Lamberti et al., “Reducing the computation time in (short bit-width) twos complement multipliers,” IEEE Trans. Comput.,

vol. 60, no. 2, pp. 148–156, Feb. 2011.

[5] N. Petra et al., “Design of fixed-width multipliers with linear compensation function,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 58, no. 5, pp. 947–960, May 2011.

[6] S. Galal et al., “FPU generator for design space exploration,” in Proc. 21st IEEE Symp. Comput. Arithmetic (ARITH), Apr.

2013, pp. 25–34.

[7] K. Tsoumanis et al., “An optimized modified booth recoder for efficient design of the add-multiply operator,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 61, no. 4, pp. 1133–1143, Apr. 2014.

AUTHORS PROFILE

N. SHEHANAZ received B.Tech degree in ECE from Rajooli Veera Reddy Padmaja Engineering College for

Women, C.K.Dinne, Kadapa in the year 2012 and M.Tech degree in VLSI System Design from Annamacharya

Institute of Technology and Sciences, Kadapa in 2016. Her research interests include VLSI Chip Design,

Communications and Robotics.

 B.V. Sowjanya completed her B.Tech in ECE from Kuppam College of Engineering in the year 2011 and

M.Tech degree in DECS from JNTUA college of Engineering, Pulivendula in 2014. Her research interests include

Communications and Embedded Systems.

T.C Sanjeeva Rayudu did his B.Tech in ECE from PBR VITS, Kavali, Nellore in 2009 and M.Tech VLSI

System Design from SVNE, Rangampeta, Tirupati in 2011. His area of research interest includes VLSI and

Communications.

http://www.jetir.org/

